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LElTER TO THE EDITOR 

Quantum Ising model on a quasiperiodic lattice 
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Institut fur Theoretische Physik, Universitat zu Koln, Zulpicher Strasse 77, D-5000 Koln 
41, Federal Republic of Germany 

Received 6 July 1988 

Abstract. We consider a quantum king model where the exchange couplings and the 
transverse fields follow a quasiperiodic two-valued sequence. The model is shown to exhibit 
an king-like critical point. The spectrum of the critical Hamiltonian is in accordance with 
the predictions of conformal theory. 

Since the experimental discovery of quasicrystals there has been a growing interest in 
studying this new state of matter [ 13. A great number of theoretical papers have been 
devoted to explaining the stability and the unusual properties of this phase [2-41. The 
magnetic phase transition on quasiperiodic lattices is also the object of active investiga- 
tion. Most of the results, however, have been achieved on one-dimensional models 
[5-71 where the phase transition takes place at zero temperature. In higher dimensions 
only a few results are available. Universality seems to hold for quasiperiodic topology 
too, if the interaction does not depend on the length of the bonds [8]. The situation 
ia.more complicated when the interaction is bond dependent and the quasiperiodically 
modulated interaction plays the role of a non-periodic external field. In this case it 
depends on the type of lattice whether this field is irrelevant [9,10] or whether it acts 
more likely as a random field and washes the phase transition completely out [ 111. 

In this letter we investigate a quantum Ising model where the strength of the 
couplings follows a two-valued quasiperiodic sequence. The quantum mechanical 
phase transition of this system is supposed to be equivalent to the critical behaviour 
of some two-dimensional classical layered Ising model [12]. To our knowledge this 
is the first exact investigation of a model with non-trivial phase transition where the 
interaction is quasiperiodically modulated. 

Before writing down the Hamiltonian of the model let us define the position of the 
atoms on the lattice in the following way: 

Xj = j + [ ( j +  l)/w](A -1) (1) 
where A > 0, w 3 1 is an irrational number and [XI denotes the integer part of x. The 
series of lattice spacings: 

Fj = xj - xj-, (2) 
is a two-valued ( A  and 1) quasiperiodic sequence. If w = p / q  is a rational number 
expressed with p and q coprimes then the series (2) is periodic with period p ,  while 
for irrational w the series is non-periodic. The Fibonacci lattice is characterised by 
w = 7, where 7 = (1 +d5)/2 is the golden mean. 

t Permanent address: Central Research Institute of Physics, H-1525 Budapest, Hungary. 
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Now we define the model on this lattice by the Hamiltonian: 
N N 

1 = l  I = 1  
= -1 p,c+:u:+, - h  2 p,a: (3) 

where a: and a: are Pauli matrices at site i. The boundary condition ( e c )  is specified 
as = g a ; ,  with g = 1,O and -1 for periodic, free and antiperiodic BC, respectively. 

To solve (3) we proceed in the well known fashion [13]. First, the Hamiltonian is 
expressed in terms of fermion creation and annihilation operators, then the resulting 
quadratic form is diagonalised by a canonical transformation. The diagonal Hamil- 
tonian assumes the form: 

H =c A k ( V L 7 ) k  -4) (4) 
k 

where 77; and q k  are fermion creation and annihilation operators. The energy of the 
modes may be obtained from the solution of the following eigenvalue problem: 

( 5 )  

( s a )  

(56) 

@k-'hp;-l + @ ; ( p / - ,  2 + h 2 p ; )  + @;lhp;  = fA:@k 

@ ,"( - w h ) p L  + @ ;( g 2 p  L + h2p ;) + @.'k hp:  = i A i @  
@ r - L h p L - l  +@,"(/.L&-~ + h * p L ) + @ : ( - ~ h ) p L  =aA',@F 

for 1 = 2,3, .  . . , N - 1. The remaining two equations depend on the form of the BC: 

where w = g exp(iaN,) and N , =  z V : 7 ) k  is the number of fermions. The eigenvalue 
problem ( 5 4  b )  may be written in the matrix form: 

( 6 )  G@ -1 2 
k - 4 A k @ k *  

First we solve the bulk problem in (5) and then turn to study the boundary effects. 
It is easy to see that, at h = 1, 

@A = C, sin( al) (7)  
is a solution of (5) with zero eigenvalue. This soft mode drives the phase transition 
which takes place at h = 1 independently of A and w. Now we try to determine the 
energy of the low excited modes near the critical point by choosing the eigenvectors 
in the following form: 

0; = C sin( q,)( 1 + A a l )  

q/ = (7r - k ) l +  kP/+ 6 

(8) 

(9) 

where 

A = h - 1 << 1, k<< 1. The a/ and PI  parameters are position dependent, but do not 
depend on k and A in leading order. In the following we show that (8) is an eigenvector 
of G to linear order. Let us insert (8) into (6) and denote the resulting vector by 
(clk = G&. Retaining terms up to second order we obtain 
9; = @;{A(A/-l - A / ) +  k cOt(rpl)(BI-, - B,)  -A2Al + t k 2 ( b / - l B / - ,  + b/B/) 

+ Ak cot( pi)[  U/-IB/- l -  ( U /  + 2 ) B / ] }  + 0 3 .  

a/ = a/+, - a/ - 1 

(10) 

(1 l a )  

Here 

b/ = & + I -  PI - 1 
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while the omitted terms contain expressions with k3,  A3, k2A,  k A 2 , .  . . . It is easy to 
observe from (10) that +k in (8) is an eigenvector of G to linear order with zero 
eigenvalue if the conditions 

A,  = A = constant BI = constant (12) 

are fulfilled (in leading order). To satisfy these equations we look for other relations 
between the al and bl parameters. First, note that by symmetry reasons these parameters 
may have only two values-a,, a ,  and b,, b,-depending on the value of the lth bond. 
On the other hand, according to the definition ( l l a ) :  

(13) ( 1 / N )  (a l  + 1 ) = (a, + 1 ) n, + ( a ,  + 1 ) n, = 0 
I 

where n, and n, are the density of the A and 1 bonds, respectively: 

n, = 1/w n ,  = 1 - l / w .  (14) 

These relations (13) and (14) are also true for the bl coefficients, so b, = al. Equations 
(12) are trivially fulfilled for the same type of bonds while for different bonds one 
obtains using ( l l b ) ,  (13) and (14): 

A = B = - A ~ w / [ A ' ( w  - I ) +  13. (15) 
Thus we have determined the eigenvectors up to linear order. The next step is to 
calculate the eigenvalues up to second order by using these eigenvectors. The eigen- 
values are given as 

*ti4=(T~:o:)(T~:o:)-'. (16) 

Using (10) this expression is easy to evaluate with the result: 

A i / 4 =  -A(A2  + k2)+ 03. (17) 

( ~ ~ ~ ~ ~ b l ) ( ~ ~ ~ ~ ~ ) - ' = - l  I (18) 

Here we made use of the relation: 

and the A k  term vanishes, while 

( sin(2pl))( sin2(pl))-' = 0. (19) 

Thus, according to (17), the dispersion relation for the low excited states is given by 

(20) Ak = t ( A ,  w ) ( A 2 +  k2)'I2 

&(A,  u ) = ~ A { u [ A ~ ( w - ~ ) +  1]-1}"2 (21) 

where 

is the sound velocity. Relation (20) is the same as for the quantum Ising model [14, 151. 
Since the critical behaviour of the system is determined by these low-energy excitations 
we can conclude that our model belongs to the Ising universality class for all values 
of A and w. This is the main result of our letter. It is easy to draw consequences of 
equation (20). The dispersion relation at the critical point is linear: A k ( h  = 1) = 
5 ( A ,  w ) k  At this point the energy gap linearly vanishes: 

El - Eo 5( A, U ) (  h - 1). (22) 
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Thus the correlation length exponent is v = 1 .  Furthermore the specific heat has a 
logarithmic singularity at h = 1. 

Now we turn to analyse the effect of boundary conditions. For periodic and 
antiperiodic BC equations (Sa, b)  are satisfied if 

@ ; + W ( o “ = O  (or+’+ w a ) ; = o .  (23) 

COS[( T - k ) N ]  = - w sin[( 7~ - k)N] = 0. (24) 

For small k and A these equations are fulfilled with the functions (8) if 

These relations are the same as those of the quantum Ising model [15]. Thus we can 
borrow the results. The possible k values are from two sets: 

I-L = {*t(r/”m - 1)) v = (0, *(7r/N)2m} (25) 
where m = 1 , 2 , .  . . , and m<< N. The allowed values depend on the parity of N ,  and 
on the form of the BC: 

( a )  N,  even 

kPE I.L kAPE v 

kpE v k*P E P. 

( b )  N ,  odd 

(The subscripts P and AP refer to periodic and antiperiodic BC, respectively.) 
Since the dispersion relation (20) and the allowed k values for our model and for 

the quantum Ising model are the same the two models also share the tower-like structure 
of the spectrum at the critical point in the finite-size scaling limit [16]: 

E,  - Eo= ( ~ T / N ) ~ ( A ,  w)(x+  n +n’). (26) 
Here Eo and E, denote the energy of the ground state and the ith excited state, x is 
the anomalous dimension of a primary operator and n and n’ are non-negative integers. 
For periodic BC in the energy sector ( N ,  is even) x, = 2. In the magnetisation sector 
( N ,  is odd) x, measures the difference in the ground-state energies for periodic and 
antiperiodic BC. Thus to determine x, one needs information about the complete 
spectrum which is not available in our calculation. Therefore we performed numerical 
calculations for large systems ( N  = 300). Our results confirm, with high accuracy, the 
suggestion that x, = i, which is as expected from universality. 

To summarise, we have solved exactly a quantum Ising model where the couplings 
follow the quasiperiodic sequence (2). The Ising-like phase transition is preserved for 
all values of A and w.  Furthermore the low-lying excitations at the critical point have 
a conformal tower structure. 

Due to the way of derivation our results remain valid for other similar problems. 
First, we mention the case of periodic structures, which corresponds to rational w 
values. Our earlier solution of the quantum Ising model with a staggered interaction 
[17] is recovered in (20) for w = 2. Another possible extension of the results is to the 
problem of an Ising model with two-valued random bonds where the density of the 
bonds is given by (14). According to (20), for this special random system the king 
phase transition is universally preserved, similar to two-dimensional Ising models with 
layered impurities where the interaction energies follow a Dirac delta distribution [ 121. 

The author is grateful to J Zittartz for his hospitality at Cologne University. He is 
indebted to J Kollir and A Suto for useful discussions. This work was performed with 
the research programme of the Sonderforschungsbereich 125. 
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